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Abstract

Segmenting 3D textured surfaces is critical for general image understanding.
Unfortunately, current efforts at automatically understanding image texture are
based on assumptions that make this goal impossible. Texture segmentation
research assumes that the textures are flat and viewed from the front, while
shape-from-texture work assumes that the textures have already been segmented.
This deadlock means that none of these algorithms can be successfully applied to
images of 3D textured surfaces.

We have developed an algorithm that can segment an image containing nonfron-
tally viewed, planar, periodic textures. We use the spectrogram to compute local
surface normals from many different regions of the image. This algorithm does
not require unreliable image feature detection. Based on these surface normals,
we compute a "frontalized" version of the local power spectrum which shows
what the region's power spectrum would look like if viewed from the front. If
neighboring regions have similar frontalized power spectra, they are merged. To
our knowledge, this is the first program that can segment 3D textured surfaces by
explicitly accounting for shape effects.
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1. Introduction

Automatic recognition and understanding of image texture is critical for machine under-
standing of general images. Almost every scene, either natural or man-made, contains some
texture. In fact, everything is textured at some level of magnification. One reason for the
importance of texture is that it can tell us much about a scene. Julesz[24] and Gibson[15] did
early work that shows how humans use texture to segment images and to estimate surface
normals, respectively. Both of these capabilities have been reproduced by computers. Unfor-
tunately, many computer vision algorithms give disastrous results on texture. For instance,
segmentation algorithms are usually based on an assumption of smoothly varying gray lev-
els, which is not true for texture. Stereo matching often fails on repetitive texture. Thus, to
avoid errors with other algorithms and to exploit what we can from texture, we need to
explicitly account for it.

Past efforts at automatically understanding texture in images are inherently insufficient
because of their assumptions about the underlying textured surfaces. The current state of the
art is advancing on two distinct, mutually exclusive fronts (see Figure 1). One effort, corre-
sponding to Julesz' theories, is aimed at segmenting images into regions of similar texture,
where it is assumed the textures are flat and viewed frontally. Differences or similarities in
some characteristic of the image texture are used to find texture boundaries or to group
regions of similar texture. The other effort, based on Gibson's observations, is targeted at
finding the shape of uniformly textured objects, assuming the objects themselves have been
segmented. Here, changes in otherwise uniform texture are attributed to 3D effects and used
to compute surface normals. The two efforts have conflicting assumptions that prevent their
ever being applied to the same image. If the textures are not flat and viewed frontally, the
image can't be segmented. If the texture is not segmented, its shape can't be found.

Traditional texture segmen- Traditional shape-from- We solve the combined prob-
tation requires a flat, frontal texture must have only one lem.
view. texture in the image.

Figure 1: Combining old texture problems into a new one



One way around the problem of segmenting textures that are changing due to three-
dimensional effects is to loosen the thresholds on the segmentation algorithm such that it
allows for the variation. This is the approach taken by Voorhees and Poggio:

... if we did not ignore small differences in [texture] attribute
values, a graded texture gradient, perhaps formed by the pro-
jection of a curved surface, would yield undesirably signifi-
cant texture boundaries across its face.[44]

But, it is just these small differences that can be used to compute surface orientation, so it is
undesirable to ignore them if the goal is to understand as much from the texture as possible.

Another problem with some texture analysis programs is their need for finding texture
elements. Feature-finding by computer is never very reliable, and this is a problem for tex-
ture programs that rely on it. Blake and Marinos said in 1990:

Our greatest practical problems arise from isolating indepen-

dent oriented [texture] elements from an image.[5]

And Aloimonos said in 1988:

There is no known algorithm that can successfully detect tex-
els from a natural image.[2]

Not only are texture elements hard to find, it is not even clear what one is. Although
Julesz has made great progress in differentiating between preattentive texture elements (tex-
tons) and focal-attentive texture elements, the distinction is still not fully understood. In
addition, humans can also preattentively segment at least some random, gray-level textures
as in Figure 2, for which texture elements do not exist. Thus, for machine understanding of
general textures, it makes sense to develop methods that don't rely on finding texture ele-
ments.

Some years after the important observations of Julesz and Gibson, researchers are trying
to explain human abilities in texture understanding in terms of local spatial frequency filter-
ing. There has also been success in the computer vision community at using local frequency
representations to do texture segmentation and shape-from-texture. These are attractive the-
ories, because they postulate similar mechanisms for both tasks, because they admit to a
quantitative formulation, and because they do not require feature detection.

2



Figure 2: These random textures can be preattentively segmented. (Both
textures have the same mean and variance in gray level. They are from
Brodatz[71, D2 fieldstone and D12 bark of tree.)

We have developed a texture understanding program based on local spatial frequency
that both overcomes the segmentation/shape deadlock and does not rely on finding texels. It
is shown pictorially in Figure 3. Given an image with multiple, nonfrontal textures, our pro-
gram can segment the texture and compute surface normais. We do this by computing 2D
Fourier power spectra over small square patches in the image. These spectra show the local
spatial frequency content of each part of the image. Our program works exclusively with the
local spectra, so it does not ever require finding texture elements. The local spectra of dis-
tinct textures are different, so we can use this for segmentation. We show that the local spec-
tra of similar textures are approximately equal to within an affine transformation that
depends on the underlying surface normal. Our program works by growing hypotheses
about various image regions. Each hypothesis covers a certain part of the image, and they
each contain an estimate of what that region's frequency content would be if viewed fron-
tally. This frontal view is based on a local estimate of the surface normal. Hypotheses with
similar frontally-viewed frequency content are merged. To our knowledge, this is the first
program that can segment nonfrontal textures by explicitly accounting for surface normals.

Using power spectra to analyze texture is effective, because uniform texture usually
exhibits coherence in spatial frequency. It is important to use local spectra, however, to
avoid Fourier transforming a region that contains a significant change in frequency. Such a
change could be due to a texture boundary or due to the perspective effects of a nonfrontal
surface.

3



Equal to within Different
transformation given by

Figure 3: Local Fourier power spectra are used for segmentation and shape-

from-texture.

2. The Space/Frequency Representation

Signals are traditionally analyzed in either the space (time) or frequency domain, but this
dichotomy inadequate for texture segmentation. An example is shown in Figure 4. The dis-
tinct parts of this signal, i.e. the low frequency parts on the outside and the high frequency
part in the middle, are characterized by their frequency. But, the power spectrum of the sig-

nal (with u as the frequency variable) shows only that the constituent frequencies exist
somewhere in the signal, not where they are. We need a representation that shows both the
spatial and frequency characteristics simultaneously. This "space/frequency" representation
for a ID signal is a 2D function that shows the instantaneous frequency distribution of every
part of the signal. It is like having a little power spectrum plotted vertically at every point
along the spatial axis. For image analysis, the input signal is 2D, and the resulting space/fre-
quency representation is 4D (two spatial and two frequency variables).

Ideal Space/Frequency Representation
ID Texture Signal Power Spectrum

S20 40 60 80 100120 3 u

Figure 4: A signal, its power spectrum, and Its space/frequency representation
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The space/frequency representation shown in Figure 4 is ideal, and it cannot be computed
by any commonly used techniques. We use the image spectrogram as our instantiation of the
representation. For each point in the image, we extract a square block of surrounding pixels
and multiply this block of intensities by a window function that falls off at the block's edges.
We compute the two-dimensional Fourier transform of this product and take the squared
magnitude as the local frequency representation, giving the local power spectrum. This is
the image spectrogram S(x, y, u, v), defined as

S(x,y,u, v) = f f w(x',y')f(x'-x,y', y)e-J2 (ux'+vY')dx'dy, (1)

-00-00

where f(x, y) is the image and w (x, y) is the window function. The frequency variables

are (u, v) , measured in cycles per pixel. This is what we used to compute the light-colored
blocks in Figure 3.

Our particular window function is the "Blackman-Harris minimum 4-sample" window,
recommended by experts[17][10] for Fourier analysis. Its equation is

w(/) = WO - w I cos ( L l) + w2 cos ( 1 ) -w 3 cos (T- ) (2)

where L is the radius of the window, 0 < 1:• L, and 1 = x + y2. The coefficients are

(w 0, w1, w2, w3 ) = (0.35875, 0.48829, 0.14128, 0.01168). This function is plotted in

Figure 5.

Figure 5: Blackman-Harris minimum 4-sample window function

For our analysis, we let L = 64. Any choice of window size is a compromise. A large
window gives better frequency resolution for frontal textures. But when the texture is
changing due to 3D effects, a large window will cover a larger variation in frequency. This
causes smearing in the Fourier transform. A large window will also more likely contain a
texture boundary, which makes it useless for both shape and segmentation.
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Thinking in terms of basis functions is a good way to compare the spectrogram to other
methods of computing the space/frequency representation. The real distinction between
many of these methods is their basis functions. In each of these transforms, the basis func-
tions are convolved with the image data, meaning they define what signal components the
transform emphasizes. For instance, the basis functions of the spectrogram are complex
sinusoids modulated by the window function w (x, y) . In Figure 6a we show a sampling of
the basis functions from our spectrogram. They are sinusoids modulated by the Blackman-
Harris window. Figure 6b shows some of the basis functions of a variable window spectro-
gram, where the window size is a constant multiple of the sinusoid's wavelength, giving
smaller windows for higher frequencies. These smaller windows mean the high frequencies
in the space/frequency representation are less likely to be corrupted by the window overlap-
ping into two or more distinct regions (e.g. textures) of the signal. For our analysis, how-
ever, the higher frequencies are usually just overtones of the lower frequencies, so they
usually have the same extent. Also, we look at all frequencies simultaneously, so a spectrum
with only the lower frequencies corrupted is no better than a spectrum with all the frequen-
cies corrupted. Therefore, by using constant-sized windows, we gain the advantage of
higher frequency resolution at high frequencies (because of the larger windows) over the
variable window spectrogram and other techniques.

Figure 6c shows some of the Gaussian-modulated sinusoids (an example of wavelets)
used by Super and Bovik[42] for their work in shape-from-texture. These differ from the
variable window spectrogram in that they are normalized to have equal energy. The impor-
tant difference between their space/frequency representation and ours is that we compute a
dense sampling in frequency, using about 2000 filters at each pixel, while they use only 72
for images the same size as ours. We find the dense sampling makes it easier to track small
frequency shifts in the typically "peaky" Fourier transforms of periodic texture.

Figure 6d shows the filters used by Malik and Perona[30] for their work in modeling pre-
attentive, frontal texture segmentation. These are not modulated sinusoids like the rest, but
linear combinations of two or three Gaussians, meant to approximate the physiological
mechanisms of early vision. They use 96 different filters and process their outputs nonlin-
early. Their filters' sparse sampling and small size would give inadequate resolution in
space and frequency for detecting small frequency shifts due to shape effects.

in summary, we chose the spectrogram because it gives -= intuitive-looking picture, pro-
vides a dense sampling in space and frequency, and comes with the well-developed theory
of Fourier transforms. We are not trying to mimic biological vision mechanisms, so we are
free to choose the method that is best for machine implementation. The method of comput-
ing the representation is really only important at the algorithmic level of our development.
The basic theory of projecting frequencies, which we cover in the next section, applies
regardless of the particular representation.

6
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Figure 6: Space/frequency basis functions

a) Constant-sized windowed sinusoids that we use (spectirogram)
b) Window size a constant multiple of wavelength (variable window spectrogram)
c) Gabor functions used by Super & Bovik[421 for shape-from-texture (wavelets)
d) Linear combinations of Gaussians used by Malik & Perona[301 for texture segmentation

3. Periodic Texture in 3D

This section contains a derivation of the connection between the surface normal of a peri-
odically textured surface and the local frequency of a projected sinusoid in an image. This is
important because it relates a physical characteristic of a 3D scene to the measurable behav-
ior of the projected frequencies in an image. We show how the local spatial frequencies in
the image are approximately related by an affine transformation to the frontal texture's fre-
quency. The affine parameters are functions of known camera parameters and the unknown
depth and surface normal of the texture. From this we show that the frequencies of two
image patches are also related by an affine transform. If we assume the two patches come
from the same plane, then the depth variable drops out, leaving the surface normal as the
only unknown. We exploit this fact in our shape-from-texture algorithm in Section 4.

7



3.1. Coordinate Frames

Figure 7 shows the coordinate frames used in the derivation. The camera's pinhole is at
the origin of the (X, Y, Z) frame. This serves as the world coordinate frame, and points

defined in it will be referred to with upper-case (X, Y, Z). The -Z axis is coincident with
the camera's optical axis and points into the scene being imaged. The image plane is the
(x, y) frame with its origin on the optical axis at a distance d behind the pinhole. It is paral-

lel to the XY plane.

textured surface

s
y

(AX, AY, Az)
nn

N dd
image plane

inimage plane

Figure 7: Coordinate frames used in derivation

We imagine that each point on the locally planar textured surface has its own coordinate
frame (s. t, n), with the in axis coincident with the surface normal. The surface normal is

defined with the gradient space variables (p, q), thus the unit vector along the n axis is

h _1(p, q, 1), with r = /p2 + q2 + 1, in the world frame. The origin of this surface

r

frame is (AX, AY', AZ) with respect to the world frame.

The 4x4 homogeneous transformation matrix that locates and orients the surface frame
with respect to the world frame is

p2 +rq pq(1-r)

t2 1 t22 t23 t241 = rAY(r) p + 2 (3)

z r

1tott32t33t34 rp2 +2 p2+q2 q r

I in imag plaqa

L 0O 1 -p -q 1 rAZ

0 0 0 r

8 p ,Iwt + nte ol rm.Teoii fti ufc



This was derived by making a single rotation of the (s, t, n) frame around the unit vector
2+ q2

(-q,p, O) / (p + ) by an angle ý with cosd = 1 and sin =-
r r

3.2. Projected Texture

This subsection concludes with an expression for a perspectively projected sinusoid. We
begin by assuming the texture on the surface is "painted" on and not a relief pattern. It is
locally characterized in the (s, t, n) surface frame as a pattern of surface markings given by

g(s, t). Points on this locally planar surface are given by coordinates (s, t, 0) . Applying the

transformation matrix, the corresponding world coordinates are

X= tlls+tl 2 t+AX

Y= t2 1s+t 22t+AY (4)

Z= t31s+t32t+AZ

Under perspective, these points project to the image plane at

X -dtlls+tl2t+AX

x t3 1s+t 32t+AZ

y t2,1 s+t 22t+AYy = - = -d
t3 1s + t32 t + AZ

The origin of the (s, t, n) frame thus projects to (xi, yi) = (-d - ,-d A on the

image plane. In order to avoid carrying a coordinate offset through the calculations, we

define another coordinate system, (x', y'), on the image plane that is centered at (xi, Yi)

with its axes parallel to those of the image plane. Given an (x, y) on the surface,

tllS +tl2t +AX
x'= x-xi =-d-i t3 1S+t 32t+AZ 

(6)

Y' = Y-Yi= -d :l;s+t22t+AY ,9+ t32t + AZ

9



Solving these two equations for (s, t) will give equations that give a point in the surface

frame for any corresponding point in the (x', y') frame. Doing so, using
xiAZ YiAZ

(AX, AY) = ( d - d ) and the orthonormality relationships among the vectors in

the transformation matrix, we have

AZ [d (y't 12 - x't 22 ) + t32 (y'xi - x'y,)]
s(x', = d[ 13 (x' + x) + t32 (y'+ Y) - dAZ]

t~x',Y) =AZ [d (y'tlIl - x't21,) + t31 (Y'Xi - x'Yi) I
t(x,y) = d[t13 (X' +X) +t 32 (y'+ y) -dAZ]

Thus, if the brightness pattern on a locally planar patch on a textured surface is g(s, t),

then the projected pattern on the image plane is a nonlinear warping of the pattern given by

g(s(x', y'), t(x', y')).

To simplify the frequency analysis, we will linearize this warping using a truncated Tay-

lor series around (x', y') = (0, 0) . The approximation is justified since we are only exam-

ining a relatively small window of intensities around the point of interest. We have

s(x', y') = SxX' + Syy' (8)

01x, Y') -= txX' + tyy'

with

AZ [d (rp2 + q) qyi (p2 + q ]
SFx•(x"Y') I(x',y.) = (0,0) d (p2 +-q2) (Pxi+qyi-d)

Sy a ( V )I -AZq [dp (r- 1) +xi(p 2+q)q

d (p2 + q 2) (Pxi + qyi - d) (9)

AZp [dq(r- 1) + yi(p2 + q2)]tx=•'tx 'l~'y)= (0,0)=2 2
Xd (p2 + q ) (px, + qyi - d)

AZ [d (p2 + rq 2) - pxi (p2 + q2)]

ty ;-t(x"Y')I(xYy)= (0,0) d d(p +q2) (pxi+qy -d)

10



where we have substituted the values of t i from Equation (3).

The projected version of g(s, t) is then approximately g(s/xx + syy', t/x' + tyy'), which is

just an affine transformation (without translation) of the coordinates.

3.3. Relation Between Projected Sinusoids

If we show how the projection affects a single, sinusoidal texture pattern, we can easily
see what happens to periodic textures, because they are just summed sinusoids (according to
the Fourier series). Suppose the brightness pattern on a textured surface is given by

cos (27c (uos + vot) ), then the corresponding projected textures from two different points

on this surface would be given by

cos (2n ( (SxlX' + syly') uo0+ (txlx' + t y1y') Vo 0

cos (2s ( (sx2'+ sy') u° + (tX2X' + ty/') vo)

where we have started subscripting with "1" and "2" to indicate two distinct points on the
image plane. The frequencies of the sinusoids are

=Y t[ y I:][0 (10)

2] =X 2 tX 21 0J

v2 Y2 12L0

Some linear algebra shows that the frequencies of the two projected sinusoids are them-
selves related by an affine transform (without translation):

2] = r, b1  I] [st I Stlv (11)
2J b1[ xty7-sytx, Sy2ty-syty2 Sxty2 -Y2X,

To get the full relation in terms of quantities we know, we plug in for the s's and t's from
Equation (9). We assume the two points on the textured surface are both on the same plane,

thus pI = P2 = p, qI = q2 = q, and

11



AZ2  d-pxI - qyl

AZ- d-px2 -qy 2  
(12)

Then

(d-pxI - qyl) (d-px1 - qY2 )
aI (Px2 + qY2 - d) 2

P (d-pxl - qyl) (Y2 - Yl)
(PX2 + qY2 - d) 2

q(d-pxI-qYl) (x2 -xl) (13)

a2 - (PX2 + qY2 -d)2

(d-pxl - qyl) (d-Px2 - qyl)
b2 2

(PX2 + qY2- d)2

where (xI, yI) and (x2, Y2) are the two points on the image plane being compared.

We conclude that the frequencies of a single sinusoid projected from the same plane to
two different points in the image are approximately related by an affine transformation. The
affine parameters are functions of the position of the two points on the image, the camera's
pinhole-to-sensor distance, and the plane's surface normal. In the next section, we show
how to exploit this relationship to find the surface normal.

4. Shape from Periodic Texture

This section presents our algorithm for finding the surface normal of a plane with peri-
odic texture using local spatial frequency. We presented the theory for general textures in
[26]. We concentrate on periodic textures here for the sake of simplicity, speed, and noise
immunity. This shape algorithm is an integral part of our segmentation algorithm.

12



4.1. Periodic Texture Representation

If we assume the texture on the plane is periodic, then any physically realizable such tex-
ture can be represented by a Fourier series. Thus, we assume the frontal texture brightness
pattern is given by

00 00

g(s, t) 1 Cmnexp [j21 (mu 0 s + nv0 t)], (14)
n =•-- m = -00

where we are unconcerned with the values of the fundamental frequency (u0, v0 ) and the

complex Fourier series coefficients Cmn* Using upper-case letters to represent Fourier trans-

forms of their corresponding lower-case functions in space, along with this definition of the
Fourier transform,

00 00

F(u, v) = f f f(x, y)e-J2x (ux+vy) dxdy, (15)
--00--00

we have

00 00

G (u, v) = _ Cmn(u - muo, v- nvO). (16)
n = -oom = -w

This is a grid of delta functions, with each delta at one component frequency. For example, a
periodic cotton canvas (Brodatz[7] D77) and its power spectrum are shown in Figure 8. We
note that the delta functions are slightly spread. This is because we are computing the Fou-
rier transform with only local support.

We showed in Section 3 that the local brightness pattern from a surface patch in the scene
undergoes approximately an affine transformation when it is projected onto the image plane.
Since an affine transformation in space corresponds to an affine transform in frequency[ 141,
the Fourier transform of the projected texture patch will be a scaled and skewed grid of delta
functions, with each delta representing one frequency component.

In order to represent the spectrogram more efficiently and to speed subsequent computa-
tions, we only store the peak frequencies from each power spectrum patch. Our spectrogram
preprocessor finds the peaks in each patch in order of size. It keeps looking until the current
peak is less than 20% of the magnitude of the largest peak, or until it finds six peaks, which-
ever comes first. It also ignores peaks below a frequency of 0.03 cycles/pixel. This helps
eliminate low frequencies due to shading.

13



Power Spectrum

u

Figure 8: The Fourier transform of this periodic cotton canvas is composed of
delta functions.

In order to track frequency shifts for computing surface normals, we need to know which
peaks in one patch correspond to those in neighboring patches. Our preprocessor matches
peaks between every patch and its two neighboring patches to the right and below. We do
this pairwise matching by considering every possible match combination between the two
sets of peaks, including leaving some peaks unmatched. We pick the combination that has
simultaneously the most matches and no match errors that exceed a threshold based on the
largest surface normal we expect in the scene. For a maximum (p, q) of ( 1.5, 1.5), this
threshold prevents matching peaks that are more than about 0.05 cycles/pixel apart.

After this preprocessing step we do not need the original spectrogram for any of the sub-
sequent operations. It is adequately represented by the peaks and peak matches.

4.2. Computing Surface Normals

We compute surface normals by finding the (p, q) that best accounts for the observed
frequency shifts between neighboring patches. At its most basic, this computation involves
just two adjacent patches centered at (x,, y,) and (x2 , Y2 ) on the image plane. The sets

of m matching peaks from the two patches are (u 0, v 1o), (ul,, v11), (U 1 2, V12)

(ul, Vl,_,) and (u2o, v2 ), (u2 , v2 ,), (u22, V22 ), ... (U2._I, ) . If we write the

affine parameters from Equation (13) as functions of the surface normal, we have
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This will be small if we have the correct surface normal and the correct matches among the
peaks. We perform an exhaustive search over a grid in (p, q) and take the surface normal

that minimizes essd as the solution. If we have more than two patches to use, we find the

surface normal that minimizes the sum of the essd's for all unique, adjacent pairs of patches

in the region. We only consider adjacent pairs of patches, that is, the patches that have had
their frequency peaks matched by the preprocessor. This algorithm is similar to one devel-
oped by Super and Bovik[41]. One difference is that ours uses multiple frequency peaks
from a single texture, while theirs uses a single, dominant frequency at each point.

4.3. Results

Two important parameters that affect the accuracy of our solution are the number of
patches used to compute the surface normal and the center-to-center spacing of the power
spectrum patches. For a given center-to-center spacing, we would like to use as many
patches as possible, as long as they all fall on the same textured plane, in order to have more
data contributing to the solution. We would also like to avoid small center-to-center dis-
tances, because the shape-induced frequency shifts would be dominated by noise and
approximation errors.

Figure 9 shows four identical plates with different Brodatz[7] textures mapped onto them
using a computer graphics program. The actual surface normal is (p, q) = (0.614, 0.364).
We tested our algorithm on these images using different numbers of patches and different
center-to-center spacing. In each trial, the center-to-center spacing was equal in x and y. We
let this parameter vary from 5 to 50 pixels in increments of 5. For each center-to-center dis-
tance, we computed shape using as many unique n x n squares of adjacent patches as would
fit on the textured part of the image, starting with n = 2.

Figure 10a shows the average errors in degrees of our surface normal estimates for differ-
ent numbers of patches and different center-to-center spacings. The average was taken over
all four images and over all the n x n squares of patches that would fit on the texture. As
expected, the error decreases for larger numbers of widely spaced patches, with the best esti-
mates being in error by about six degrees. Our shape-from-texture algorithm succeeds in
giving good results on periodic textures without the need for image feature detection. Since
it uses the space/frequency representation, it is possible to integrate it into a segmentation
algorithm that works on 3D textured, planar surfaces.
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Woven French canvas (D21)

Wovn auminnm wire (D6)

Oriental straw cloth (D53) 
Cotton canvas (D17)

Figure 9: Images used for testing surface normal comPuttiofl These are all

from the Brodatgs'I boolk of textures, and the boOk's designations are given in

parentheses.
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Figure 10: Average errors in surface normal from the four test images for

different patch center-to-center distances and different numbers of patches.

Unfortunately the need for accuracy conflicts with the requirements of our segmentation

algorithm in terms of the number of patches and center-to-center spacing. Our segmentation

a!gorithm begins by estimating surface normals using small parts of the image. Using small

support for these estimates is important, because we do not want the support to overlap tex-

ture boundaries. This means we have to keep n and the center-to-center spacing small,

which tends to compromise accuracy according to Figure 10a. Fortunately, though, some of

the estimates from the n x n squares are still good, even with small support and small n.

Figure l0b shows the average minimum error in surface normal, where the minimum is

taken over all the n x n squares and the average over the four images. In almost every case,

at least one of the n x n squares gave a fairly accurate surface normal. Since we start our

segmentation with many seed regions, we are likely to have some that are "good", even with

small support. For the segmentation algorithm discussed in the next section, we chose

n = 2 and a center-to-center spacing of 15 pixels. Since we do not allow interleaved

regions, we computed the spectrogram with the same center-to-center spacing.
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5. Segmenting Textured 3D Surfaces

Our segmentation procedure is a region-growing algorithm that merges regions based on
similarities in their local power spectra. The problem with applying such a procedure
naively to an image of 3D textured surfaces is that the power spectra on identically textured
surfaces will change due to 3D effects. And while a generous tolerance may still allow such
regions to be merged, this may well allow different textures to be merged also. Thus, we
need to explicitly account for the 3D effects. We do this by computing the surface normal of
each region (using the algorithm in the previous section) and then "frontalizing" the fre-
quencies to show what the power spectra of the texture would look like if viewed from the
front. If adjacent regions have similar frontalized frequency content, they are merged. A
detailed description of the segmentation algorithm follows.

5.1. The Data Structures

The smallest elements of our image representation are the power spectrum patches, rep-
resented by their peaks. Since we segment based on 4-connectedness, each patch has a list of
its 4-connected neighbors. Each patch also contains the indices of the matched peaks in the
patch to the right and the patch below.

Sets of merged patches are called hypotheses. Each hypothesis contains the usual records
needed for region growing, i.e. the constituent patches, neighboring patches, and neighbor-
ing hypothesis. We also use the constituent patches to compute the surface normal using our
shape-from-texture algorithm. This surface normal is used to compute a frontalized version
of the frequency peaks for each constituent patch. Each group of matching frontalized peaks
is represented in the hypothesis in terms of its mean frequency. These mean frequencies give
an idea of the power spectrum of the region if it were viewed frontally. The surface normal
is also used to compute frontalized versions of the four-connected neighboring ratches of
the hypothesis. If these frontalized neighbors are from the same texture on the same plane,
they will be similar to the frontalized hypothesis.

5.2. Frontalization of Frequency Peaks

This section describes our frequency peak frontalization algorithm. Our goal is to deter-
mine what a group of frequency peaks on different patches would be if we viewed the tex-
ture from the front. We know from Equation (10) that a frequency (u0 , v0 ) on a non-frontal

textured surface in the scene is related by an affine transformation to a frequency (ui, vi) on

the image plane. In matrix form, this is
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[Vi = [SX ttx][uo V-0 =Sifuol (18)
y.L v0J

We cannot simply invert this relationship for the frontalization, because we don't know the
AZ, coordinate of the surface, and this is required to compute the matrix Si. In fact, we can

Tnever compute [ uo, v0 ] , because we never know the depth of the patch.

Imagine we have a frontalized reference patch ( (p, q) = (0, 0) ) with a depth of AZref

from the same plane and with the same texture. The 4x4 homogeneous transformation locat-
ing the surface patch's local coordinate frame would be

til t12 t 13 t 14  [I 0 0 Axre1

t 2 1 t 2 2 t 2 3 t 2 4  = 1 0 AYrej1  (19)

ot3 o t32 t33 t4 0 0 1 AZreJ
0 0 0 11 Lo 0 0 1J

Using these transformation parameters and solving Equation (6) for s and t gives

-X-AZref
Sref(X' Y')- d (20)

S-y' AZref
ref(X' Y') d

Then the projected frequency from this frontal patch will be approximated as before as an
affine transformation of the scene frequency. The affine transformation parameters come
from the first partial derivative terms of the Taylor series of Sref(x', y') and tref(x', y').

The frontalized frequency is then

_Zref

I frontal d 0 _Sref . (21)
LVfrontalJ 0 -- re

Solving Equation (18) for [u0 , v0 ] T and inserting this into Equation (21) gives
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When Fi is multiplied out, it elements become

AZrefd (p2 + rq 2) - pxi (p2 + q2)]

f• = dr (p 2 + q2) Azi

AZrej, [ dq (I1 - r) -yj (p 2+q 2) Af12 = Z dr (p2 + q2) AZi
223

AZrefq [dp ( - r) -x (p + )]
f21 = dr(p2 + q2) AZi

AZre/[d (rp2 + q2) - qYi (p +q2)]
f22 = dr(p2 + q2) AZi

This still contains the unknown depth value AZi. But, since the reference patch is on the

same plane, then we have from Equation (12):

AZref d-px,-qy, (24)

AZ. d - Pxref- qYrref

Putting this ratio into Equation (23) gives the affine frontalization parameters for an arbi-
trary patch i in terms of known quantities:
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[d (p2 + rq 2) _ pxi (p2 + q 2) (px, + qyi - d)

= dr (p2 + q2 ) (PXref+ qYref- d)

p [dq (I1 - r) -Yi (p2 + q2) ] (PXi + qYi - d)

f12 = dr (p2 + q 2) (PXref + qYref- d) (25)
q [dp (I - r) -xi (p2 + q2) ] (pxi + qyi - d)

fl= - 2 2dr (p + q2) (Pxref+ qyref- d)

2+ 2

[d(rp +q ) - qyi (p2 + q2) ] (pxi + qyi - d)

f22= dr (p 2 + q2 ) (PXref+ qYref- d)

The frontalization step works this way: For a group of patches hypothesized to be on the
same plane, we arbitrarily pick one patch as the reference patch. In our case we pick the first
in the list. The affine frontalization transformation is then computed for each patch accord-
ing to Equation (25), and each peak frequency is transformed accordingly. This does not tell
us what the true frontalized frequencies are, but it tells us what the frequencies would be if
all the patches had the same depth as the reference patch, which is good enough for segmen-
tation.

5.3. Initial Hypotheses

Region-growing begins with a conservative set of small hypotheses. Each of these initial
hypotheses is made up of four adjacent power spectrum patches arranged in a square. We
check each possible 2x2 set of patches as an initial hypothesis. In order to qualify, the set of
four patches must meet three criteria:

I. They must all have the same number of peaks.

2. All possible peak matches among the four patches must exist.

3. There can be no inconsistent match loops, where a set of peak-to-peak
matches would result in two peaks in the same patch being matched (see
Figure 11).

These initial hypotheses are allowed to overlap. The centers of the initial hypotheses for
the image in Figure 3 are shown in Figure 12.
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Figure 11: Inconsistent match loops are not allowed in the initial hypotheses.

Figure 12: Centers of the Initial 2x2 hypotheses

5.4. Hypothesis Growing

Growing the initial 2x2 hypothe3es proceeds in three stages. In the first stage, each 2x2
hypothesis is merged with neighboring patches that have the same number of peaks as the
hypothesis. If the average deviation between frontalized peaks is more than
Au = 0.01 cycles/pixel, then the merge does not take place. Overlapping hypotheses are
allowed in this stage. This makes the algorithm more robust, in that the constituent patches
of a bad initial hypothesis can be taken over by a good hypothesis. If any hypothesis con-
tains over half the patches of another hypothesis, the two hypotheses are merged.
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The second stage begins by deassigning each patch that belongs to more than one
hypothesis. Then each unassigned patch is assigned, in raster order, to the best neighboring
hypothesis. The best hypothesis is chosen by creating a frontalized version of the patch with
respect to each neighboring hypothesis. We match peaks between the frontalized patches
and the hypotheses using the same peak-matching routine as in the spectrogram preprocess-
ing program. The best hypothesis is the one with the most matches. Ties are broken by tak-
ing the hypothesis with the smallest sum of squared differences between the matched peaks.
(If no matches are found for any of the candidate hypotheses, this patch becomes its own
hypothesis.) This stage ends by splitting all noncontiguous hypotheses. The output is a set of
contiguous regions with every patch assigned to one and only one region.

The final stage merges similar hypotheses. Each hypothesis maintains a list of four-con-
nected neighboring hypotheses along with frontalized versions of their peaks. Two neigh-
boring hypotheses are merged if the average deviation between the matched peaks on their
common border is less than Au = 0.01 cycles/pixel, and if they have "enough" matched

peaks between their constituent patches on their common border. "Enough" means that of
all possible peak matches between the two, at least 60% must be matched. This helps avoid
merges between hypotheses that have a few, lucky, well-matched peaks.

5.5. Result

We tested our segmentation program on the image in Figure 3. This image was produced
with a computer graphics program, mapping Brodatz[7] textures onto flat plates. Figure 13
shows the edges of the final hypotheses for the underlying image. The three textures are
clearly outlined. This demonstrates an advantage of region-growing over edge-finding, in
that all the edges are closed, and there is no "leaking" from one region to another. This is
critical to the shape-from-texture computation that is an integral part of the region-growing,
which is in turn a necessary component of successfully understanding as much as we can
from the image. Figure 13 also shows the surface normals computed for each region. The
average error for the three textured regions is 8.4 degrees.

The preliminary segmentation demonstration still has problems due to the coarse spatial
sampling we use to compute the spectrogram. The blockiness could be solved by increasing
the spatial resolution at the cost of increased computation time. The shrinkage in the regions
is caused by patches that overlap texture boundaries or that butt up against the edge of the
image. One solution to the texture boundary problem is to find and split these patches once
we have an idea of what the frontal textures look like. Anwher solution might be to simply
find and eliminate them, letting the overlapping "pure," patches take over the region left
behind.
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Figure 13: Edges of regions and needle diagram of computed surface normals

of texture plates

6. The Future of Space/Frequency and Computer Vision

We have shown how the space/frequency representation is useful for solving the com-
bined problem of segmentation and shape-from-texture. This should not be a surprise,
because the representation has already been used to solve both problems separately, as
shown in Figure 14. The space/frequency representation is the natural choice for solving the
combined problem.

All the work cited in Figure 14 is computer vision research based on either the Fourier
transform of the whole image or the space/frequency representation. Our earlier work in
moire patterns[127] was based in the frequency domain, and this meant we were prepared to
account for aliasing in the shape-from-texture algorithm we presented in (28]. This repre-
sents another unification of algorithms based on the space/frequency representation. Since
so many other algorithms are based on the same representation, we predict a gradual unifica-
tion of all these algorithms in terms of the space/frequency representation. We give this final
theory the grand title of "The Unified Theory of Spatial Vision".

24



Texture Segmentation
Gramenopoulos[16]
Dyer & Rosenfeld[ 1]
Matsuyama et aL [32]
Turner[43]
Fogel & Sagi[13]
Bovik et aL [6] Sementation andShap from Texte
Reed & Wechsler[38] This paper
Malik & Perona[30]

Shape from Texture
Bajcsy & Lieberman[3]
Brown & Shvaytser[8]
Jau & Chin[22]
Super & Bovik[42]
Krumm & Shafer[28]
Malik & Rosenholtz[3I]

Unified Theor ot
Moire Patterns (Aliasing) Shape from Aliased Unified Tison
Idesawa et aL [20] Texture
Bell & Koliopoulos[4] Krumm & Shafer[28]
Cetica et al.[9]
Morimoto et aL [33]
Krumm & Shafer[27]
Parker[35]

Focus/Depth from Focus
Horn[19]
Pentland[36]
Krotkov[25]
Subbarao[40]
Xiong & Shafer[471
Aitken & Jones[l]
Nelson et al. [34]

Stereo
Sanger[39]
Langley et al. [29]
Weng[46]
Fleet et aL [ 12]
Jones & Malik[23]

Motion/Optical Flow
Jacobson & Wechsler[21]
Heeger[18]
Weber & Malik[45]

Shape from Shading
Pentland[37]

Figure 14: This work in computer vision has used spatial frequency or local
spatial frequency representations, and indicates that many different algorithms
can be unified because of their common representation.
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